

Proton Plan Proton Projections Accelerator Division Review August 2005

Eric Prebys

Outline

- Projection Procedure
- Status of 2005 projections
- Revisions for future
- Long term projections
- Conclusions

Procedure for estimating Proton Delivery

Assume traditional operational priority:

- > Protons for pBar production
 - Limited by ability to slip stack
 - Limited by max cooling rate
- > Protons for NuMI
 - Limited by max Booster batch size
 - Limited by max MI cycle rate
 - Limited by max MI proton capacity
 - (will be) limited by ability to slip stack NuMI protons in MI
- > Protons for BNB (currently MiniBooNE)
 - Determined by difference between Booster capacity and maximum MI loading.
 - Currently limited by Booster losses, and will continue to be for some time.
 - Ultimately limited by Booster rep. rate.
 - Extremely sensitive to fluctuations in total Booster output

PROTON PLAN Evaluate Effect of Booster Improvements

- Calculate effect of various improvements based on increased acceptance:
- Use:

$$A = \delta A + \sqrt{\frac{\beta_T \varepsilon_{\text{max}}}{\beta \gamma} + \left(D \frac{\Delta p}{p}\right)^2} \quad \Longrightarrow \quad \varepsilon_{\text{max}} = \frac{\beta \gamma}{\beta_T} \left((A - \delta A)^2 - \left(D \frac{\Delta p}{p}\right)^2 \right)$$

Effective aperture reduction

Improvement	Date	δA_{x} (mm)	$eta_{x, ext{max}}$ (m)	$D_{x,\mathrm{max}}$ (m)	δA_y	$eta_{y, ext{max}}$ (m)	ε _x (π-mm- mr)	ε _x (π-mm- mr)	<u>Rel</u> . total	Incr.
Initial		10	45.8	6.2	4	24	15.0	15.0	85.3%	
Dogleg 3 Fix	10/03	10	40.8	4.5	4	24	17.6	15.0	100.0%	17.3%
Dogleg 13 Fix	10/04	10	36.1	3.8	4	24	20.2	15.0	114.6%	14.6%
Booster Dump Relocation	12/05	10	34.9	3.5	4	24	21.0	15.0	119.1%	4.0%
ORBUMP/400 MeV upgrade	12/05	5	34.9	3.5	4	24	29.5	15.0	167.8%	40.9%
Correctors (dipoles)	10/07	2	34.9	3.5	2	24	35.4	18.3	245.6%	46.3%

Additional Effects

- Increased transmission once Long 13 is removed
 - > 3%
 - > Probably conservative
- Effect of sparse sextupole correctors on emmittance
 - > ~10%
 - Does not yet include significantly improved harmonic corrections
- · Effect of Booster RF improvements
 - > ~5% increased uptime
- Effect of Linac Low Level RF
 - > ~5% improvement on average beam intensity

PROTON PLAN Estimating Booster Output

- History has shown that the lab tends to overestimate the benefits of particular improvements.
 - > Tuning and optimization take a long time
 - > Tend to asymptotically approach the goal, then get distracted by other things.

So we...

- > Evaluate the potential of particular improvements based on effective aperture increase or uncontrolled beam loss reduction:
 - For example, if something reduces uncontrolled loss by 10%, it has the potential to allow us to send 10% more beam.
- > Consider the following scenarios:
 - "Design": After one year of tuning, we realize half of the potential benefit.
 - "Fallback": After one year of tuning, we realize one quarter of the potential benefit.

Peak Booster Intensities

Date	"Design" Limit (1E16 p/hr)	"Fallback" Limit (1E16 p/hr)	Comment				
1/2006	10.7	9.3	Effect of collimators, dogleg fix, plus some alignment				
1/2007	13.6	10.6	Alignment, ORBUMP, and L13				
1/2008	18.9	13.0	New corrector system				

Booster Beam Limit

- These are "peak" numbers
- An "average to peak" correction is applied to get average values

Proton Projections

Phases of Operation

- > Phase I
 - After 2004 shutdown (now)
 - Lattice problems ameliorated
 - Booster limited to 7.5Hz total repetition rate
 - Ramp up to 2+5 Main Injector operation
- > Phase II
 - After 2005 shutdown
 - Booster capable of ~9Hz operations
 - MI still running in 2+5 mode
 - Increase beam to BNB
- > Phase III
 - Slip stacked (2+9) operation to NuMI
 - Possibly requires RF upgrade
 - Beam to BNB as allowed by increase Proton Source capacity

Factors Considered in Projections

- Linear ramp-up to see benefit of improvements
- Slip stacking efficiency
- Annual shutdowns (assume 2 mo/yr)
- Uptimes: based on 2004
- Peak to average corrections
 - > For BNB, based on MiniBooNE 2004
 - > For NuMI, used reasonable guess
- Effects of shot setup
- Implemented as VB routines in Excel spreadsheet
 - > Easy to modify

PROTON PLAN How are we doing so far?

- Total Booster output:
 - > Compare actual to projections from Nov., 2004 Proton Plan document
- Individual NuMI/MiniBooNE:
 - > Compare actual to revised NuMI ramp/up from ~2/05
 - > Note:
 - No allowance for NuMI target problems
 - No correction for pBar slip stacking problems
 - Good for MiniBooNE
 - Bad for NuMT

Protons to NuMI

BNB (MiniBooNE)

Benefited from NuMI's problems

Summary of Tracking to Date

- Things we did well on:
 - > Average total proton rate
 - More or less on track
 - > NuMI load per batch
 - Predicted: ~1.5E13
 - Actual: ~2.1E13
- Things we've missed on
 - > Batch intensity
 - Assumed 5F12 based on 2004
 - Actual ~4E12
 - Largely tuning philosophy
 - > Main Injector cycle rate
 - Assumed we'd be locked to 2 second rep rate by now
 - > Slip stacking performance
 - Good for NuMI so far
 - Bad long term

Modifications for Long Term Projections

More realistic batch intensity

- > Before: 5.0E12 -> 5.5E12 (peak) over next three years
- > Now: 4.5E12->5.25E12 over next five years

Assume lower slip stacking performance

- > Before: slip stack at 90% of peak batch intensity
- ➤ Now: slip stack at 80% of peak batch intensity (i.e., we'll achieve (9*4E12 per cycle to NuMI)

· However

- > Now assume NuMI running during shot setup
- > Effects of Linac LLRF and Booster RF on efficiency

Machine Loading

"Design" PoT

	Booster Batch Size	Main Injector Load	Cycle Time	MI Intensity	Booster Rate*	Total Proton Rate	Annual Rate <u>at</u> end of Phase		
		(AP + NuMI)	(sec)	(protons)	(Hz)	(<u>p</u> /hr)	NuMI	BNB	
Actual Operation									
July, 04	5.0E+12	1+0	2.0	0.5E+13	5.3	0.7E+17	0	3.3E+20	
Proton Plan									
Phase I	4.7E+12	2+1→2+5	2.0	3.3E+13	7.3	1.1E+17	2.2E+20	2.1E+20	
Phase II	4.9E+12	2+5	2.0	3.4E+13	8.7	1.4E+17	2.3E+20	3.5E+20	
Phase III	5.3E+12	2+9	2.2	5.8E+13	9.0	1.9E+17	3.3E+20	2.8E+20	

Peak values

Averages

Cumulative Totals

- Note: these projections do not take into account the collider turning off in 2009
 - > NuMI rates would go up at least 20%
 - > Possibly much higher with Stage II improvements

Conclusions

- The initial proton estimates have been reasonably good for 2005 so far
 - > First accurate proton delivery projections ever.
- Many things went right this year:
 - > Beam cogging
 - > Initial NuMI multibatch operation
 - > Simultaneous NuMI/MiniBooNE running
- · We have revised estimates for future running
 - > Reasonably confident in our estimates for NuMI, if slip stacking works.
 - > Large inherent uncertainty in estimate for 8 GeV line